
EMISSIVITY OF AN INHOMOGENEOUS FLUIDIZED BED 

V. A. Borodulya and V. I. Kovenskii UDC 66.096.5:536.3 

We calculate the degree of blackness of the surface of an isother~nal inhomogene- 
ous fluidized bed. 

In [1-3] we described a model of radiant transfer in a fluidized bed that takes account 
of the effects of multiple reflection of the radiation by particles. As a result of calcu- 
lations using this model, it was determined that the region of possible values of the degree 
of blackness of an isothermal homogeneous bed lies between the curves of efb(gp) for a dense 
bed (m = 0.4) and a rarefied bed (m ~ 0.95) for ~p = 0-i. The efb(ep) curves have no ana- 
lytic representation, but as it turned out, they can be satisfactorily approximated in the 
sp = 0.01-i range by the power functions 

~lb = ~ ' "  (1)  

for the dense bed and 

erb = e~ "31 ( 2 )  

for the rarefied bed. The average error of the approximation does not exceed i% for formula 
(i) and 0.5% for formula (2). 

The direct application of the results obtained is complicated by the fact that the high- 
temperature bed fluidized by the gas is inhomogeneous. Following [1"3], we can determine 
only the average values of cfb for the condition when the time and area of averaging are 
much larger than the period of phase change in the bed at the surface and the area of its 
contact with the bubble, respectively. In the present study, therefore, we attempt to de- 
termine the emissivity of an isothermal inhomogeneous fluidized bed as a whole and the emul- 
sion phase and bubbles forming it. 

To estimate the effect of the structure of the dispersed medium on its emissivity, we 
shall consider an isothermal inhomogeneous fluidized bed in contact with a heat-exchange sur- 
face, part of which is the window of the instrument for measuring the radiation flux (for ex- 
ample, a radiometer [4]) or a specified segment of the heat-exchanger wall. The radiation 
flux received by the instrument will vary periodically as the emulsion is replaced by the 
boiling bubbles. 

In accordance with the two-phase theory [5], the emulsion phase is a homogeneous fluid- 
ized bed whose porosity is close to mo. Therefore, in order to determine the degree of 
blackness of its surface, we can use formula (i) directly. 

In calculating the radiation flux, we can consider each bubble in the bed independently. 
This is due to the high optical density of the emulsion separating the bubbles. As was 
shown in ~I], for total absorption of the incident radiation flux it is sufficient to have 
a dense dispersed layer whose thickness is 5-6 times the particle diameter. 

Suppose that in the emulsion phase there moves a bubble of given equivalent diameter D~ 
at a velocity given, in accordance with [6], by the formula 

u b = 0 .711  ~gDb. ( 3 )  

We assume that when the bubble approaches the heat-exchange surface, it is deformed into 
a segment of a sphere (Fig. i), retaining the same volume and velocity. For a given degree 
of deformation of the bubble the geometric center of the spherical segment lies at a distance 
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Fig. I Model for calculating the radiation of a bubble in 
a fluidized bed: i) wall; 2) emulsion phase of the fluid- 
ized bed; 3) bubble; 4) radiometer window. 

(i --X)Rx from the surface, and its radius is determined from the condition that the volume 
remains constant when the bubble is deformed : 

i71 = Db 12 (2 - -  x)~ (1 -q- x)] -113. 

The radius of the base of the segment is 

(4) 

R~ = R l i / g  (2-- ~). (5) 

The base of the segment is formed by the window through which the radiation emerges 
from the bubble, represented in this case as a spherical surface with a degree of blackness 
Cem (since D b >>Dp at all times). For a given bed temperature and a given eem the density 
of the radiant flux leaving the bubble cavity corresponds to an effective degree of blackness 
[7] 

28era 
85 ----- 

2 - -  (1 - -  e~,.) [1 + sgn (I - -  x )  i / 1  - -  x (2 - -  •  " ( 6 )  

Since c b is independent of external factors, the base of the deformed bubble can be regarded 
as a circle with radius (5) and degree of blackness (6), included in a surface whose emissiv- 
ity is Eem. The density of the resulting energy flux sensed by the radiometer or by the 
specified segment of the heat-exchange surface from the directly adjacent fluidized bed will 
be 

q~,. = o + - -  I 
~v., ~em Lt. 1-']"~'~-j - -  t ] '~-~] (7) 

during the radiant exchange with the emulsion phase and 

( '  ' )-'r,' =,,,, r'] qb = ~ + .  - -  1 ( 8 )  
~ eb L\ 100  \ 100  ] 

when the exchange of radiation with the bubble takes place. Replacing the emulsion phase 
with the base of the bubble around the specified segment of the surface or the radiometer 
window leads to a change of the radiation flux in the ratio 

qb = ~ + ~ - - ~ , ~  ~b (9) 
qem ~w -~" 8b - -  8wSb 8era 

For the radiometer qb/qe m = eb/Eem > i, since we always have Eb > eem. 

Let us follow the dynamics of the variation of the radiation flux sensed by the radiom- 
eter when the bubble passes. As the dimensionless scale of fluctuations in the radiation 
of the fluidized bed it appears convenient to use the value of the optical contrast between 
the phases, defined as followss 

I(~ = qb ~ I .  ( i 0 )  
q ~  
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Fig. 2. Recorded phase contrast during the time when the 
bubble passes by the radiometer window (time counted from 
the moment of maximum radiation intensity): D r = D b = 
0.05 m; ~w = i; Cp = 0.27; i) I--• 2) 0.16; 3) 0.4; 4) 
0.8; 5) 1.12; 6) 1.6. t, sec. 

The entire cycle of phase change around the instrument window can be divided into four time 
intervals: t:, contact with the emulsion; t2, filling of the radiometer window by the bubble; 
ts, contact with the bubble; t~, removal of the bubble from the radiometer window. The 
duration of the phase-change cycle depends on the bubble tracking frequency. The intervals 
t i (i = 2, 3, 4) are determined by the dimensions of the bubble and the value of • Depend- 
ing on the ratio of the dimensions of the instrument window to the base of the deformed bubble, 
there are three possible variants for its passage: 

1) R ~ < R r :  ts = t~ = OJ%; t~ = (Dr- -  02)/%; 2) R2 = R,: t~ = t~ = O j %  = 0 / % ;  t ~ =  0; 

3) R 2 > R /  t2 = t~ = D/%; t3 = (D~--Dr)/%. (11) 

The r a d i a t i o n  f l u x  d e n s i t y  q r  s e n s e d  by  t h e  r a d i o m e t e r  i n  t i m e  i n t e r v a l  t~ i s  e q u a l  t o  
t h e  d e n s i t y  o f  t h e  r e s u l t i n g  f l u x  upon  r a d i a t i o n  e x c h a n g e  w i t h  t h e  e m u l s i o n  and i s  g i v e n  by  
f o r m u l a  ( 7 ) .  

D u r i n g  t i m e  i n t e r v a l  t3 t h e  f l u x  q r  i s  e q u a l  t o  t h e  f l u x  qb i f  R2 ~ R r .  I n  t h e  c a s e  
when R2 < R r :  

q, = aqb -I-- ( I  - -  ~ q era, ( 12 )  

where a = (R2/Rr) 22. 

During the period of covering (t2) and uncovering (t~) of the radiometer window by the 
bubble, the instrument senses radiation from both phases. We have 

q~ (t) = a (t) % + [ 1 - -  a (t)] q,~, (13) 

wherea(t) = Ab(t)/~; Ab(t ) is the area of the radiometer window covered by the base of 
the bubble: 

A b (t) = As (t) + A, (t), (14)  

h e r e A i = R ~ [ a r c s i n V  2a~--a~ - - ( 1 - - a ~ ) V 2 ~ - - ~  ] ( i = 2 ,  i = r )  a r e  t h e  a r e a s  o f  t h e  c i r c u l a r  

s e g m e n t s  f o r m i n g  t h e  zone  o f  c o n t a c t  b e t w e e n  t h e  i n s t r u m e n t  and t h e  b u b b l e  when t h e  window 
i s  p a r t i a l l y  c o v e r e d  ( s e e  F i g .  1 ) ;  

%t (D r - -  %0 %t (D~ - -  %0 
a s =  ; ~ r =  (15) 

D~ (Rs + R~ - -  %0 Dr (R~ + R~ - -  %0 

Formulas (12)-(15) enable us to determine the instantaneous value of the local radiation 
flux and the value averaged over the cycle of phase change. Figure 2 shows the results of 
the calculation of the phase contrast recorded by the radiometer when the bubble passes by. 
It can be seen from the figure that the maximum value of K is attained for a specific degree 
of deformation of the bubble which depends on the ratio of D r to Db. These parameters, as 
well as the configuration of the heat exchanger, define the duration of t= and t~ and the 
nature of the function qr(t). 

Figure 3 shows how the value of maximum phase contrast attained in local radiant heat 
exchange varies as a function of the degree of blackness of the particles and the specified 
segment of the heat-exchange surface or the radiation receiver which has various dimensions 
in relation to the bubble. Since the bubble of deformation was random, the results of the 
calculation were averaged with respect to the parameter ~ in the range • = 0.8-1.6. As can 
be seen from the figure, in the experimentally investigated range of values ep = 0.2-0.7 
the radiation flux emitted by the bubble is about 25% higher, on the average, than the ra- 
diation from the emulsion, which agrees with the experimental data of [4]. 
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Fig. 3. Maximum recorded phase contrast as a function of the degree of black- 
ness of the particles and the wall: I) ew = 0.4; II) ew = i; i) D r = 2.5 Db; 
2) D r = Db; 3) Dr = 0.25D b. 

Fig. 4. Emissivity of a maximum inhomogeneity fluidized bed as a function of 
the bubble deformation parameter: I) cp = 0.8; 2) 0.6; 3) 0.4; 4) 0.3; 5) 0.i, 
the functions Efb(ep) for the rarefied (I) and dense (II) homogeneous beds and 
the degree of blackness of the maximum inhomogeneity bed averaged over the 
parameter ~ (III, Dr = Db). 

A comparison of the values of recorded phase contrast K for ew = i for different ratios 
of the diameters of the instrument window and the bubble enables us to evaluate the spatial 
resolution of the radiometer. The local measurements of the radiationfluxes will be suf- 
ficiently reliable only if Dr ~ Db' 

Formulas (12)-(15) enable us to calculate the value of the radiation in the case of 
flux local radiation exchange (with a segment of a large heat-exchange surface or a surface 
whose dimensions are commensurable with those of the bubble), when the alternation of phases 
causes oscillations in the radiation flux with rspect to time. In the case of radiation ex- 
change with a very large surface, the inhomogeneity of the fluidized-bed structure leads to 
a spatial inhomogeneity in the radiation flux. It is found to be possible to determine the 
exact upper and lower limits of the degree of blackness of the surface of an inhomogeneous 
fluidized bed. Since cfh 2 eem, the lower limit of the domain of the values of efb is de- 
termined by formula (i), To find the upper limit, we used the idea of a fluidized bed with 
a maximum inhomogeneity, i.e., a set of spherical bubbles touching one another in the emulsion 
phase. The results of the calculation of the degree of blackness of the maximum inhomogeneity 
bed are shown in Fig. 4. As can be seen from the figure, the values of Efb averaged over 
for a maximum inhomogenelty fluidlzed bed practically coincide with the relation (2)for a 
homogeneous rarefied bed. Consequently, the relations (i) and (2) can be Used fordetermin- 
ing the boundaries of the region of values of the degree of blackness of the fluidlzed bed 
independently of its structure. The degree of blackness of the surface of an inhomogeneous 
fluidized bed is 

where f* = 0.614 is the fraction (averaged over the deformation parameter ~) of the heat- 
exchange surface in contact with the bubbles in the maximum Inhomogeneity bed, for the cubic 
packing of the bubbles that is assumed in the calculation. The value of f can be calculated 

from the formula [3] 

Re -- Reo 
f = 1.56 -~r.~-. F , (17) 

ED~ 
where Re = u g D p ;  Ar = Pp Pg 

Formula [17]  e n a b l e s  us to  c a l c u l a t e  the  a v e r a g e  v a l u e  o f  the  deg ree  o f  b l a c k n e s s  o f  an 
tnhomogeneous bed a d j a c e n t  to  a s u r f a c e  whose a r e a  i s  much l a r g e r  t h a n  t he  a r e a  o f  the  base  
of  the  deformed bubb l e .  
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NOTATION 

A, surface area; D, diameter; f, fraction of the surface that is in contact with the 
bubbles; g, acceleration of gravity; k, optical contrast of the phase; m, porosity; q, rad- 
iant flux density; R, radius; T, absolute temperature; t, time, u, velocity; s, degree of 
blackness; • degree of bubble deformation, ~, kinematic viscosity; o, Stefan--Boltzmann con- 
stant; Re, Reynolds number; Ar, Archimedes number. Subscripts: 0, start of fluidization; b, 
bubble; em, emulsion phase; fb, fluidized bed; g, gas; p, particle; r, radiometer; w, wall. 
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RADIATIVE--CONDUCTIVE HEAT TRANSFER IN "HEATER--MULTILAYER STRUCTURE" SYSTEM 

B. B. Petrikevich and S. N. Shchugarev UDC 536.24 

The coupled problem of radiative--conductive heat transfer is solved by a numer- 
ical method. The integral equation describing radiative heat transfer is approx- 
imated with a system of linear algebraic equations. 

The main purposes of a thermal experiment are identifying the structure of the mathemat- 
ical models of the thermal state and analyzing heat-transfer processes which actually occur 
in objects under study. Natural heating tests are extremely complicated and costly. For this 
reason, wide acceptance have received testing methods based on studying the thermal state of 
a natural structure on simulating test stands such as, for instance, test stands simulating 
radiative heating. Performing such tests requres careful preparation and, above all, scien- 
tifically substantiated rational planning. Lately new approaches are taken in many places 
not only to processing of experimental data but also to optimal organizing of experiments. 
One way to improve the effectiveness of experimental studies is applying modern methods of 
mathematical simulation of the thermal state of an object under test stand conditions during 
the test preparation stage. 

In this study will be developed a mathematical model of heating of an axisymmetric struc- 
ture during tests performed in radiative heating stand, a model based on the solution to the 
coupled problem of radiative--conductive heat transfer. 

The mathematical model of radiative--conductive heat transfer involves a simultaneous sol- 
ution of two problems, radiative heat transfer in a "heater--irradiated surface" system and 
transient heat transfer in a mu!tilayer structure. 
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